
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015                                                                                                         143 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Benford’s Law in Scientific Research 
Werner Hürlimann 

 

Abstract— As departures from Benford’s law have been observed in many scientific data sets, there is a theoretical need to understand 
such discrepancies. We argue that the use of parametric extensions to Benford’s law is appropriate and demonstrate this for several first 
significant digit distributions taken from theoretical scientific laws or extracted from real-world data sets. 
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1 INTRODUCTION                                                                     
Newcomb [28] observed that in logarithmic tables lower sig-
nificant digits occur more frequently than upper ones. His 
“law of probability of the occurrence of numbers” remained 
unnoticed until Benford [3] verified it empirically. Soon after, 
this was reported twice in Nature by Goudsmit and Furry [11], 
Furry and Hurwitz [10], and even formulated as a “harmonic 
law of Statistics” by Furlan [9]. In this respect, there is an in-
creasing trend to study “the Mathematics of Harmony” and 
integrate it into general science (e.g. Stakhov [40]). A particu-
lar instance is the newspaper mention by Szpiro [39] of a gen-
eralized Benford law for prime numbers as formulated in 
Luque and Lacasa [26].  

At present, Benford’s law is such omnipresent in the sci-
ences that there is no need to motivate it again. Completing 
the bibliography [17], the number of publications listed in 
Berger and Hill [4] and Beebe [2] approaches the first thou-
sand and they appeared in nearly 350 journals in almost all 
contemporary research fields (e.g. Beebe [1]). 

Departures from Benford’s law have been detected in many 
data sets in the natural sciences. As several studies suggest, 
there is a theoretical need to explain such discrepancies. In this 
respect, we ask whether the use of parametric extensions to 
Benford’s law is appropriate in general science. Our approach to 
answer this question follows multiple paths. 

We recall in Section 2 the existence of parametric first digit 
distributions (FDD) that extend and embed Benford’s law. Es-
sentially three useful parametric FDD models are considered, 
namely the generalized Benford (GB), the two-sided power Ben-
ford (TSPB), and the Pareto Benford (PB). They are all realized 
by at least one probabilistic model. Although parametric exten-
sions of Benford’s law exist in mathematics, especially number 
theory, they have not been fully recognized at an early stage, as 
argued at the beginning of Section 3. Then, based on several 
theoretically sound first digit distributions from physics and 
actuarial sciences, Stigler’s alternative first digit law, and eight 
published first digit data sets from the geophysical, earth sci-
ences, social sciences, biomedicine and finance, we demonstrate 
improved goodness-of-fit of the parametric extensions of Ben-
ford’s law and comment the obtained results.  
     In particular, a new theoretical law in the field of actuarial sci 

-ences, called Bernegger-Lloyd law, that almost obeys Benford’s 
law, is displayed. We demonstrate that Stigler’s law and Ben-
ford’s law differ fundamentally from both a probabilistic and 
statistical viewpoint. In the social sciences, we show that twitter 
users by followers count are almost perfectly Pareto Benford, a 
result that improves the analysis in [21]. A data set from bio-
medicine about magneto-encephalograms (MEG data) is statis-
tically rejected as being not conform to both Benford’s and 
Stigler’s law, the last one against a previous belief. On the other 
hand, we improve the analysis of Rodriguez [34] concerning the 
data set from Ley [24] (Dow Jones index from finance). While 
the FDD does not conform to Benford’s law it does with 
Stigler’s law, and additionally the Pareto Benford extension is 
also selected. Section 4 concludes the present exposé with some 
characteristic statements about the use of parametric extensions 
of Benford’s law in theory and applications.  

2 EMBEDDING BENFORD’S LAW INTO PARAMETRIC FDD 
EXTENSIONS 

Since Hill [13] a lot of attention has been put on the theory of 
random variables in probability spaces in order to better un-
derstand the probability distributions that follow or closely 
approximate Benford’s law. Along this path one might men-
tion papers from Leemis et al. [23], Engel and Leuenberger [8], 
and others, to recent contributions by Wójcik [44], [45]. Rely-
ing on [15], [18], our focus concentrates again on those para-
metric FDD’s that extend and embed Benford’s law. Three 
parametric extensions of Benford’s archetype are considered. 

 
Generalized Benford law (GB) 
 
Based on a Bayesian probabilistic model, the author in [21], 
Proposition 3.1, derives in a new way the so-called generalized 
Benford law (GB) with FDD defined for  ),( ∞−∞∈γ   by 
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In the limiting case  0→γ   the two formulas are consistent 
and generate Benford’s law. One sees that the GB generates 
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monotone decreasing probabilities if, and only if, one has  
1−≥γ , where the limiting case  1−=γ   is the discrete uniform 

distribution. Therefore, GB is defined as monotone decreasing 
FDD for all  ),1[ ∞−∈γ   and includes Benford’s law as special 
case  0=γ . Moreover, this FDD is tilted toward a uniform 
distribution for  )0,1[−∈γ   and is more tilted than Benford’s 
law for  ),0( ∞∈γ . The author [21], Proposition 3.2, also de-
rives the exponential Benford law (EB), which coincides with 
the GB in the special case  ),0[ ∞∈γ . 
 
Two-sided power Benford law (TSPB) 
 
The author [15], Theorem 2.1, derives this one-parameter ex-
tension of Benford’s law from a two-sided power random var-
iable. For  1≥c   the corresponding FDD is given by 
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The special cases  2,1=c   coincide with Benford’s law, which 
henceforth embed into the TSPB. 
 
Pareto Benford law (PB) 
 
The author [18], Theorem 3.1, obtains this two-parameter ex-
tension of Benford’s law from a special case of the double Pa-
reto distribution studied in Reed [33]. For parameters  

0, >βα   the FDD takes the form 
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One notes that Benford’s law is embedded into the PB. Indeed, 
setting  1=β   and letting  α   goes to infinity, one sees that the 
PB converges to Benford’s law. 
 

Another one-parameter extension of Benford’s law that 
encompasses Stigler’s law (see Section 3) and the uniform FDD 
has been constructed by Rodriguez [34] and revisited in [21]. It 
is remarkable that all the considered parametric extensions of 
Benford’s law are related to power law distributions. Is there a 
mathematical reason for this phenomenon? Are there neces-
sary conditions for embedding Benford’s law into parametric 
FDD extensions? 

3 THE PARAMETRIC FDD EXTENSIONS IN SCIENTIFIC 
RESEARCH 

The usefulness of parametric FDD’s of Benford type in math-
ematics is self-evident. However, this does not seem to have 
been fully recognized at an early stage. For example, the as-
ymptotic distribution of the first digit of  m -th integer powers 

is GB distributed with parameter  m/1=γ   as the number of 
digits goes to infinity (e.g. [16], Theorem 1, see also Ross [35]). 
This result can be extended to other number sequences (see 
[19], [20]). Note that sequences of integer powers have already 
been studied by Furlan [9], Section III.13 for squares, pp. 172-
191, Section III.15 for cubes, pp. 207-217, and Section III.16 for 
general powers, pp. 219-229. On the other hand, the first digit 
sequences of prime numbers follow a GB with size-dependent 
parameter that converges necessarily to the uniform distribu-
tion, as shown by Luque and Lacasa [26]. 
     In view of these mathematical results about the GB distri-
bution, one may ask whether the use of parametric FDD ex-
tensions to Benford’s law is appropriate in general science. For 
this, it is natural to consider data sets from physics and earth’s 
science, where Benford’s law is known to fit it empirically 
quite well. To underpin our study with some more theoretical 
background, we begin with three prominent theoretical laws 
from statistical and quantum mechanics, namely the Boltz-
mann-Gibbs (BG), the Fermi-Dirac (FD) and the Bose-Einstein 
(BE) distributions, which have been studied from Benford’s 
point of view in Shao and Ma [37]. 

 
Boltzmann-Gibbs (BG) 

 
This classical macroscopic law of statistical mechanics applies 
to particles in a system without quantum effects. The density 
for the energy  x   of the system is expressed by the exponen-
tial law  0),exp()( ≥−⋅= xxxfBG ββ , where  kT/1=β , with  k   
Boltzmann’s constant and  T   the thermodynamic tempera-
ture. Its FDD is denoted  );( βdBG . 
 
Fermi-Dirac (FD) 
 
This microscopic law of quantum mechanics applies to a sys-
tem in thermodynamic equilibrium that consists of many iden-
tical particles described by anti-symmetrical wave function 
with half-integer spin. The normalized probability density of 
the system energy reads  1}1){exp()2ln/()( −+⋅= xxfFD ββ . The 
corresponding FDD is denoted  );( βdFD . 
 
Bose-Einstein (BE) 
 
The Bose-Einstein law is the statistics associated to a system of 
particles described by symmetrical wave function with inte-
gral spin. The density of the system energy, which cannot be 
normalized, is proportional to  0,}1){exp()( 1 ≥−= − xxxfBE β . 
The FDD is denoted  );( βdBE . 
 
     It is known that these theoretical distributions are closely 
related to Benford’s law in the following manner. First, the 
first two FDD’s satisfy the invariant properties  

)10;();( ββ dBGdBG =   and  )10;();( ββ dFDdFD = , which lead 
to periodic functions on the  β -logarithmic scale (Figure 1 in 
Engel and Leuenberger [8], and Figures 1 and 2 in Shao and 
Ma [37]). These invariant properties imply that both FDD’s 
fluctuate around Benford’s law in the mean in a mathematical 
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precise sense as follows. The transformed functions  
)10;();(* αα dBGdBG =   and  )10;();(* αα dFDdFD =   are 1-

periodic with respect to the parameter  α   and a Fourier series 
calculation (under the assumption that  )log(βα =   is uni-

formly distributed) shows that  )();(
1

0

* dBddBG =∫ αα   and  

)();(
1

0

* dBddFD =∫ αα , i.e. in the average Benford’s law is re-

covered (consult the original papers for this). Despite of these 
nice features, the conformity of these theoretical laws to Ben-
ford’s law is not overwhelming and can be improved, as ar-
gued below in TABLE 4. On the other hand, the third Bose-
Einstein FDD is exactly Benford distributed (see Shao and Ma 
[37], Section 3.3, and Hill [14]). 
     The above BG, FD and BE laws have also been used in ac-
tuarial sciences. They have been extended by Bernegger [5] to 
a class of two-parameter distributions over finite and infinite 
ranges. Extracted from his analysis, the following special case 
is worthwhile to be mentioned. 
 
Bernegger-Lloyd (BL) 
 
Stefan Bernegger, a Swiss actuary physicist, works at the inter-
face between actuarial sciences and physics (actuar-physics). 
This researcher relates the above three distributions from 
physics to a topic in reinsurance called exposure curves. In his 
paper, the Boltzmann-Gibbs distribution is confounded with 
the Maxwell-Boltzmann distribution, and, as in Shao and Ma 
[38], should be better called Maxwell-Boltzmann-Gibbs (in 
honor of the three pioneers of statistical mechanics). After 
some detailed analysis, Bernegger derives in his equation (3.6) 
a two-parameter loss distribution that belongs to an exposure 
curve over an interval ]1,0[ . In terms of parameters 

1,0 ≥≥ gb , the loss distribution reads 
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The parametric restriction  11 >∧= gbg   belongs to the 
Boltzmann-Gibbs (BG),  1<bg   to the Fermi-Dirac (FD) and  

1>bg   to the Bose-Einstein (BE). Bernegger shows in Section 
4.3 that some exposure curves used in non-proportional prop-
erty reinsurance fit (1). In particular, he shows this for the sub-
class of the BG-FD-BE distribution (1) parameterized by the 
exposures curves that belong to the one-parameter choice 
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The special case  5=c   coincides very well with a curve used 
by Lloyd to rate industrial risks. This distribution is called 
hereafter Bernegger-Lloyd (BL). Its behaviour is similar to the 
Bose-Einstein law. Henceforth, it is expected to be closely ap-
proximated by Benford’s law, a result that is statistically con-
firmed later on. 
 
Tsallis q-exponential (q-Exp) 
 
Inspired by a probabilistic description of multifractal geome-
tries, Tsallis [42] introduced a generalization of the standard 
Boltzmann-Gibbs entropy and derived from it the Tsallis q-
exponential distribution from the principle of maximum en-
tropy (see e.g. Tsallis [43]). Generalizing the BG law, the prob-
ability density for the energy  x   is expressed by the q-
exponential law 
 

21,0

,})1(1{)2()( )1/(1

<≤≥

−−⋅−= −
−

qx

xqqxf q
Expq ββ

.  (3) 

 
If  1→q   one recovers the BG law. As shown in Shao and Ma 
[38], Section III, the explained FDD mean-value property 
shared by the BG and FD laws, also holds for the q-
exponential FDD. That is, the latter fluctuates around Ben-
ford’s law in the mean. Moreover, the amplitude of fluctuation 
diminishes as  q   increases from 1 to 2, and in the limit as  

2→q   it conforms exactly to Benford’s law. Therefore, it 
seems interesting to analyze to what extent the q-exponential 
FDD conforms to parametric extensions of Benford’s law in 
case the parameter  q   is not too far away from 1. 
 
Stigler’s law (SL) 
 
Stigler [41], a future Nobel laureate in economics, proposed an 
alternative to Benford’s law, which is less skewed towards the 
lower digits. Stigler’s law (SL) is determined by the formula 
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This FDD resembles a bit the generalized Benford law for  

]1,0(∈γ   but is in fact very different. First, as explained in Lee 
et al. [22], the two laws are based on different probabilistic 
assumptions. While Stigler assumes that the largest entries in 
statistical tables equally likely begin with  9,...,1=d , Benford 
assumes that smaller numbers with corresponding smaller 
first significant digits occur more often as bounds for statisti-
cal tables. The earlier explanation by Raimi [32], Section 5, is 
also instructive. A purely statistical discrepancy will be clari-
fied later. Stigler’s law is closely related to the “random upper 
bound model” RUBM considered by Cáceres et al. [6] in a bi-
omedicine context. In fact, the latter authors formulate a ran-
domized version of Stigler’s law. Performing simulations up 
to a size of 10’000, they allow Stigler’s upper bound to vary 
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randomly and obtain (through numerical simulations) a pa-
rameter-free FDD close to Stigler’s law. In fact, as the number 
of simulations grows to infinity the RUBM converges to 
Stigler’s law, as shown in [21]. Therefore, in view of the ana-
lytical formula (4), there is no need to perform RUBM simula-
tions. Previous nice derivations of Stigler’s law are found in 
Rodriguez [34] and Lee et al. [22]. 
    The FDD’s of the above theoretical distributions are summa-
rized in TABLE 1 (for simplicity, the scale parameters of the 
BG, FD and qExp are equal to 1, the q  parameter of  qExp is 
equal to 1.1). Of course, other theoretical FDD’s exist in the 
literature, and one might analyze them by the same method. 
To us, it is similarly and even more important to consider real-
world data sets and look at their first digits, and, if necessary, 
even second and third digits. Among the many possibilities, a 
small sample of nine data sets has been retained for illustra-
tion. The first four real-world FDD’s in TABLE 1 are taken 
from Sambridge et al. [36] and concern the geophysical and 
earth sciences. The next three are taken from the social scienc-
es: the population data of countries around the world, the 
twitter users by followers count, and the people killed by ter-
rorism (1970-2013), all three are found in Long [25]. The last 
two illustrates for biomedicine: the global infectious decease 
data is from Sambridge et al. [36] and the MEG data (magneto-
encephalograms from a healthy male) is from Cáceres et al. [6]. 
 

TABLE 1 
Theoretical FDD’s and real-world first digit data sets 

 
FDD's / data sets First Digit

1 2 3 4 5 6 7 8 9
Theoretical FDD's
Boltzmann-Gibbs (BG) 0.3297 0.1743 0.1127 0.0860 0.0726 0.0643 0.0582 0.0533 0.0490
Fermi-Dirac (FD) 0.3436 0.1841 0.1114 0.0805 0.0667 0.0595 0.0549 0.0512 0.0480
Bernegger-Lloyd (BL) 0.3008 0.1770 0.1252 0.0967 0.0788 0.0665 0.0576 0.0509 0.0466
q-exponential (q-Exp) 0.3196 0.1797 0.1194 0.0900 0.0737 0.0635 0.0564 0.0510 0.0467
Stigler's law (SL) 0.2413 0.1832 0.1455 0.1174 0.0950 0.0764 0.0605 0.0465 0.0342
Real-world FDD's
Earth's gravity 0.3296 0.1660 0.1120 0.0850 0.0750 0.0670 0.0594 0.0557 0.0503
Geomagnetic field 0.2890 0.1770 0.1330 0.0940 0.0810 0.0690 0.0610 0.0510 0.0450
Seismic wavespeeds 0.3004 0.1760 0.1330 0.0980 0.0790 0.0640 0.0560 0.0489 0.0447
S-A seismogram 0.2839 0.1569 0.1249 0.0960 0.0897 0.0737 0.0652 0.0604 0.0493
Population of countries 0.2741 0.1629 0.1230 0.1061 0.0934 0.0684 0.0653 0.0531 0.0537
Twitter users by followers 0.3262 0.1666 0.1181 0.0926 0.0763 0.0655 0.0577 0.0514 0.0456
Terrorism deaths 0.5193 0.1814 0.0990 0.0640 0.0469 0.0325 0.0247 0.0187 0.0135
Global infectious decease 0.3371 0.1671 0.1321 0.1070 0.0730 0.0540 0.0456 0.0507 0.0334
MEG 0.2580 0.2130 0.1610 0.1150 0.0820 0.0560 0.0450 0.0380 0.0320  
 
At the time being there is no simple exact mathematical test to 
decide whether a given FDD conforms to Benford’s law or 
another related parametric extension to it (cf. Morrow [27]). 
Despite this theoretical lack, a lot of experience has been ac-
cumulated to assess conformity to Benford’s law, which might 
be extended to parametric FDD’s. In this respect, the mean 
absolute deviation (MAD) test developed by Nigrini [29], Ta-
ble 7.1, suffices for our purpose (see TABLE 2). Recall the defi-
nition of the MAD statistics. Given two FDD’s, which may 
depend on parameters or not, say  )(1 dF   and  )(2 dF , 

9,...,1=d , the MAD measure is defined and denoted by 
 

∑ −⋅=
=

9

1
21 )()(

9
1

d
dFdFMAD .  (4) 

 
The MAD statistics are calculated in TABLE 3 and re-used in 
TABLE 4 as follows. First, the minimum MAD estimators of 
the parametric extensions are computed and their minimum 
values are reported in TABLE 3. Taking into account the (ex-
tended) critical values in TABLE 2 the conformity to Benford’s 
law and other FDD’s is then assessed in TABLE 4. 
 

TABLE 2 
MAD critical values and conformity to FDD 

 
MAD critical values FDD Conformity Abbreviation 

3106 −⋅≤MAD  Close conformity C 
33 1012106 −− ⋅≤<⋅ MAD  Acceptable AC 

33 10151012 −− ⋅≤<⋅ MAD  Marginal MC 
31015 −⋅>MAD  Nonconformity NC 

 
TABLE 3 

MAD goodness-of-fit for some parametric FDD's 
 

10^3 MAD 10^3 WLS
Theoretical FDD's B GB TSPB PB B GB TSPB PB
Boltzmann-Gibbs (BG) 7.591 5.637 5.465 3.280 6.128 5.729 5.754 2.079
Fermi-Dirac (FD) 11.756 5.745 10.682 5.135 13.676 7.453 13.653 4.117
Bernegger-Lloyd (BL) 0.421 0.418 0.389 0.757 0.0282 0.0291 0.0338 0.0798
q-exponential (q-Exp) 5.131 2.437 4.703 2.083 2.583 1.295 2.517 0.740
Stigler's law (SL) 16.86 12.90 12.44 9.38 27.76 25.55 16.34 15.49
Real-world FDD's B GB TSPB PB B GB TSPB PB
Earth's gravity 8.694 7.544 4.143 2.951 7.204 9.241 2.969 1.683
Geomagnetic field 3.522 2.507 3.207 1.959 1.367 1.098 1.193 0.764
Seismic wavespeeds 2.034 2.013 1.837 1.994 0.856 0.880 0.599 0.869
S-A seismogram 8.282 4.423 8.128 2.283 7.995 3.160 7.549 1.008
Population of countries 9.347 4.119 8.996 2.913 9.257 2.382 9.067 1.891
Twitter users by followers 5.648 4.415 3.399 0.244 3.321 3.106 2.714 0.018
Terrorism deaths 49.684 2.004 48.594 7.833 268.31 1.122 238.59 15.961
Global infectious decease 11.849 7.012 11.812 6.923 15.218 7.380 14.957 9.012
MEG 20.86 20.31 15.55 18.28 39.99 42.57 22.46 43.14  
 
Besides decision upon conformity, we use additionally the 
probability weighted least squares (WLS) measure used earlier 
by Leemis et al. [23] (chi-square divided by sample size) to 
decide upon the preferred FDD choices. Again, this measure 
can be used for both theoretical FDD’s or/and FDD’s derived 
from sample data. Indeed, suppose  )(1 dF     must be chosen to 
approximate  )(2 dF   and suppose both have been derived 
from a sample of same size  N . Then, by definition of the 
WLS measure, one has 
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Theoretically, if the FDD’s are known with certainty, the WLS 
measure does not depend on the sample size. It can therefore 
be used as a rule of thumb to choose the best fit to a given 
FDD among various alternatives. 
     Some interesting observations can be made. Among the 
theoretical FDD’s, the Bernegger-Lloyd conforms very well to 
Benford’s law, and it is the only one, which is actually chosen 
with first priority by the WLS selection criterion. This is no 
surprise in view of the fact that it behaves similarly to the BE 
law. The qExp generalization of the BG generates smaller 
MAD values and improved close conformity in comparison 
with the BG. For three of them, namely BG, FD and qExp, the 
WLS selection criterion chooses first the PB and then the GB. 
Special comments on Stigler’s law follow afterwards. Concern-
ing the real-world FDD’s there is close conformity for the ge-
omagnetic field, the seismic wave speeds and the twitter users 
FDD’s. First choices are the PB, TSPB and PB respectively (GB, 
PB and TSP are second choices). The earth’s gravity, the seis-
mogram and population FDD’s all perform equally well. For 
all three the PB is the first choice, followed by the TSPB 
(earth’s gravity) and the GB (other two data sets). The fit of the 
infectious decease FDD is acceptable conform with respect to 
all parametric extensions, the first WLS choice being the GB 
followed by the PB. For all these FDD’s (except the BL and the 
terrorism data) the PB is always selected first or second ac-
cording to the WLS measure. This can be expected in view of 
the extra free parameter. A bit surprising is, however, the al-
most perfect fit of the twitter data with the PB. The terrorism 
data seems a priori far away from Benford’s law (big differ-
ence for the digit one). It is a surprise that it conforms to the 
GB and is acceptable to the PB (the latter failing to be selected 
by merely 0.961 units of the WLS measure). In general, com-
pared to the TSPB the GB seems to play a more important role, 
at least for the theoretical FDD’s. This confirms partially the 
prominent role GB seems to play in number theory. 
     It remains to discuss Stigler’s law and the MEG data. First, 
TABLE 4 shows that the MEG data reveals no conformity with 
any of Benford’s extensions. Second, a separate calculation of 
the MAD and WLS measures between Stigler’s law and the 
MEG FDD yields  33 106.20,1078.13 −− ⋅=⋅= WLSMAD  . In con-
trast to Cáceres et al. [6], which claim that the RUBM/Stigler 
law “can likely explain the observed behaviour of MEG data”, 
the WLS measure does not select Stigler’s law to explain the 
MEG data. Third, Stigler’s law is not in conformity with Ben-
ford’s law )1086.16( 3−⋅=MAD  in accordance with the statisti-
cal discrepancy stated previously in the text. This law is ac-
ceptable conform to the PB law )1038.9( 3−⋅=MAD  but is 
slightly rejected by the WLS selection criteri-
on )1049.15( 3−⋅=WLS . Although the used critical values have 
not been theoretically well funded so far, they appear reason-
able to us. According to Lee et al. [22], footnote 2, p.83, there 
exist only few empirical data sets following Stigler’s law. An 
exception seems to be the stock market data of Ley [24] (Dow 
Jones index), which fits better Stigler’s law than Benford’s law, 
as shown by Rodriguez [34]. Improving this statement, TABLE 

2 rejects Benford’s law )1008.27,105.16( 33 −− ⋅=⋅= WLSMAD  
and confirms Stigler’s law )1005.2,104.3( 33 −− ⋅=⋅= WLSMAD . 
The parametric extensions of Benford’s law are not rejected 
but only the PB is selected by the WLS criterion 

)106.11,1097.8( 33 −− ⋅=⋅= WLSMAD . Although Stigler’s law 
and the MEG data are not selected by the WLS criterion for 
any of the considered parametric extensions of Benford’s law, 
there exist different probabilistic models of FDD’s for which 
they will be selected. For this, the reader is refereed to the re-
cent paper [15], which proposes a fine structure index for Ben-
ford’s law. 
 

TABLE 4 
MAD test and WLS choices ( 31015 −⋅<WLS ) 

 

Theoretical FDD's B BG TSPB PB Choice 1 Choice 2
Boltzmann-Gibbs (BG) AC C C C PB GB
Fermi-Dirac (FD) AC C AC C PB GB
Bernegger-Lloyd (BL) C C C C B GB
q-exponential (q-Exp) C C C C PB GB
Stigler's law (SL) NC MC MC AC no choice no choice
Real-world FDD's B BG TSPB PB Choice 1 Choice 2
Earth's gravity AC AC C C PB TSPB
Geomagnetic field C C C C PB GB
Seismic wavespeeds C C C C TSPB PB
S-A seismogram AC C AC C PB GB
Population of countries AC C AC C PB GB
Twitter users by followers C C C C PB TSPB
Terrorism deaths NC C NC AC GB no choice
Global infectious decease AC AC AC AC GB PB
MEG NC NC NC NC no choice no choice

generalized MAD test WLS criterion

 
 
     Finally, it is worthwhile to mention some other results re-
lated to the role GB might play for some real-world data sets. 
For example, Pietronero et al. [31] mention that the California 
earthquake magnitude distribution follows the Gutenberg-
Richter law [12], a power law which corresponds to a GB with 
approximate 1−=γ . Similarly, Nigrini and Miller [30] find 
that the sizes of lakes and wetlands conform to a GB via pow-
er law behaviour. 

4 CONCLUSION 
The interest of parametric extensions of Benford’s law in scien-
tific research has many facets. First, parametric extensions of 
Benford’s law often yield a better data fit than Benford’s law. 
Second, by embedding Benford’s law in a parametric FDD a 
simple statistical procedure to validate Benford’s law is ob-
tained. If Benford’s model is sufficiently close to its embed-
ding it is automatically revealed. The Bernegger-Lloyd distri-
bution is a typical example for this phenomenon. Third, the 
use of parametric FDD’s suggests a potential for improved 
applications in known and new fields of scientific research 
(e.g. fraud detection pioneered by Nigrini, prediction of earth-
quakes by Sambridge et al. [36], etc.). It is our hope that this 
brief presentation helps justify the high flexibility of the three 
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parametric Benford model extensions to cope with data sets of 
Benford type (at least those with decreasing FDD’s). Although 
there exists FDD’s which exactly follow Benford’s law, for ex-
ample the Bose-Einstein law in physics and the Bernegger-
Lloyd distribution in actuarial sciences, not all distributions 
with monotonically decreasing first significant digits will fol-
low Benford’s law. Given that parametric extensions of Ben-
ford’s law exist in mathematics (GB in number theory) and 
geophysics (GB for Gutenberg-Richter law), and Galileo Gali-
lei’s quote that “the book of nature is written in the language 
of mathematics”, one may ask researchers from any scientific 
discipline to reveal further FDD’s that truly follow parametric 
extensions of Benford’s law. 
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